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OVERVIEW

The research carried out during this grant achieved the scientific goals as set forth in the initial

proposal. By way of introduction, this research project was initially awarded by NASA to the Principal

Investigator (PI) when he was employed by The Aerospace Corporation; the project also has a co-Principal

Investigator, Dr. Ramon Lopez, whose funding was separate. The initial proposal was a three-year effort,

the first year of which was completed while the PI was an employee of The Aerospace Corporation. During

the last year s(coincident with the start date of the period covered in this report), the PI changed institutional

affiliation from The Aerospace Corporation to Boston University (BU). Following the move, the PI

continued the work on the overall research effort described herein by establishing a "new", restructured

two-year grant at BU whose tasks included those of the remaining two years of the initially proposed study,

and which included a no-cost extension. This final report documents primarily those elements not

described in previous progress reports.

PROJECT HISTORY/EVOLUTION

To put the results of this effort into perspective, it is first important to provide the project context and

history owing to the institutional changes and task restructuring. The main thrusts of the overall proposed

effort are to understand the three-dimensional structure of the substorm current wedge, its magnetospheric

sources, and the magnetic field geometry throughout the magnetotall during the substorm cycle. Our

approach has been one of progress through iterative use of data analysis, modeling, and theory. In the first

year of the effort, we focused on three main tasks (principal collaborators are shown parenthetically) :

establishing the magnetospheric equatorial projection of the ionospheric electrojets using empirical, static

magnetic field models (Dr. Ramon Lopez) ; building an improved, pre-onset magnetic field model of the

ring current and near-magnetotail region by appealing to empirical, equilibrium plasma pressure profiles

(Dr. Anthony T. Lui, Dr. David P. Stem); and including explicitly the effects of field-aligned currents in

magnetic field models in order to assess their importance when mapping ionospheric currents to their

magnetospheric source regions (Dr. Eric Donovan, Dr. Ramon Lopez). Several presentations of these

multi-faceted efforts were reported at scientific meetings and were completed and published.
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TASK TRANSmON

During the final period of the effort, all principal collaborators (as well as the PI) of the outstanding

tasks experienced institutional changes (Donovan, Lopez, and Spence) and the associated shifts in priorities

and duties. This wholescale reorganization led to logistical problems of focusing jointly on the specific

remaining tasks begun in the first year that had originally been anticipated for year two of the effort. We

reassessed our positions and decided to focus more tightly on the individual pieces of our study during this

final part of the funding cycle with the intent that the conclusion of the outstanding tasks begun in the first

year of the effort be continued at a low level and finished during the final year of the grant.

FINAL SUMMARY

This section outlines those tasks undertaken in the final year that contribute integrally to the overarching

project goals. First, during the f'mal year, it is important to note that the project benefited greatly with the

addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress

on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate

aim of this specific task was to assess critically the utility of such models for mapping low-altitude

phenomena into the magnetotail (and vice-versa). The bulk of this effort center ed around the finite-width-

magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 9&

15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail

plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of

the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source

particle populations as well as the magnetic and electric fieM configuration.

During the reporting period, we modified this code such that it can be interfaced with the auroral particle

precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic

specification of the equatorial distribution of fields and plasma along with their low-altitude consequences.

Specifically, we have built a simple, yet powerful tool which allows us to indirectly "map" auroral

precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere,

to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients

measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial

plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the

location of discrete features in the context of the global picture. We reported on our initial study at national

and international meetings and published the results of our predictions of the low-altitude signatures of the

plasma sheet.

In addition, the PI was invited to contribute a publication to the so-called "'Great Debate in Space

Physics" series that is a feature of EOS. The topic was on the nature of magnetospheric substorms.

Specific questions of the when and where a substorm occurs and the connection between the auroral and

magnetospheric components were discussed in that paper. This paper therefore was derived exclusively

from the research supported by this grant.
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Empirical modeling of the quiet time nightside magnetosphere

A. T. Y. Lui

Applied Physic=L_boralory,The John=Hopkins U_vcrslty, Laurel, Maryland

H. E. Spence

Space _ EnvironmentTechnoloD, Center, The Aerospace Corpor'_ion, Los Ange.._, Califomk

D. P. Stern

LaboratoryforExtratarr_rklPh_ics, NASA _ SpeccFligh_Center,Omed>e.h,M_l_d

Empirical modeling of plasma pressure and magnetic field for the quiet time nightside mag-
netosphere is investigated. Two models are constructed for this study. One model, referred to
here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the

addition of an inner eastward ring current at a radial distance of -3 R_: as suggested by obser-
vation. The other is a combination of the T89R model and the long version of the magnetic field
model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner

magnetosphere, whereas the latter prevails in the distant tail. The distn%ution of plasma pres-
sure, which is required to balance the magnetic force for each of these two field models, is
computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in
the inner magnetospheric region is also taken into account by determining an empirical fit to the
observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pre_-
sure distr_ution in force equilibrium with magnetic stresses from an empirical field model with
the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma
pressure by as much as a factor of -3 in the inner magnetosphere. The deduced plasma pressure
profile along the tail axis is found to be in good agreement with the observed quiet time plasma

pressure for geocentric distances between -2 and -35 R e.

_rrRoDI._ON

Although themagnetospherehas been studiedand sur-

veyed extensivelyforover3 decades sincethe advent of

spacecraft,them am stilloutstandingtasks pertainingto

the quiettimemagnetosphere.One oftheseisa quiettime

magnetosphericmodel with specificationof the magnetic

fieldconfigurationand the assodatedequilibriumplasma

pressuredistribution.In thequiettime Earth'smagneto-

sphere,the inertialforcepdv/dt isusuallyinsignificant,
and thereforeforcebalanceshouldexistbetween magneto-

sphericplasma pressureand electromagneticforces.An
explicitconf_,urstionresemblingthe magnetosphere and

satisfyingforcebalancehas yet tobe devised.

Equilibriumof the magnetosphere has been studied

theoreticallyin the two limitingsituationsof the inner

magnetosphere,where theEarth'sdipolefielddominates,

and the magnetotail,where the fieldarisesmainly from

the theta-shapetailcurrentsystem.The inclusionof the

transitionregionbetween thesetwo simplifiedsituations

has proved difficultPJo/gtand Wo/f,1988].In the inner

magnetosphere,Sckopke[1972] studiedequih'briumunder

the assumption of isotmpic plasma pressure in a perturbed
dipole field. This type of investigation was recently ex-

Copyright1994by.the AmericanGeophysicalUnion.

Paper number93JA02647.
0148-0227/94/93JA-02647505.00

tended by Zavr/yev and Hasegawa [1989} and Cheng [1992]
with the more realistic consideration of anisotmpy in plasma

pressure as observed [e.g., Lu/and Hamilton, 1992]. The
magnetotail equih2_-ium has been studied analytically
[Harris, 1962, Kan, 1973] as well as examined by numeri-
cal simulation [To/cA/, 1972; B/m, 1989; Hesse and B/m,
1992]. Unfortunately, no giobal three-dimensional equih'b-
rium solutionsare known. Present gtobal MHD _rnula-
tionsdo not stabilizeenough toprovidethem. Two-dimen-
sional numerical solution,when convection is included,

appears to evolve in ways that may precludea steady state

equih%rium {Ericksoa and Wolf, 198_, Erickson, 1984; Hau
eta/., 1989], although this may be merely an artifact of the
two-dimensional limitation [A"wetson and Spence, 1988].

An alternative approach to obtainingequilibrium con-

figurations is to use data. For example, the magnetic field

models of Tsygaaen_ [1987, 1989], which give averaged
magnetic field values satidying the static Maxwelrs equa-
tions, have been used extensively in relating n_
regionstothe io_ level_ viceversa [F_h/nsh>ne
et al., 1990;, Stasi_cz, 1991; E/ph/nstone and Hmm, 1992;
Pulkkinen et aL, 1992]. However, early models of this type
were badly out of force balance _r and Souduoood,
1982]. Particularly pertinent questions related to any em-
pirical magnetic field model are therefore the foIlowi_..

(1) What is the plasma pressure distribution in force
equih'br[um_th the empirical field model'?

(2) How is this plasma pressure distn_oution compared
with actual measurements?
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It is quite evident that the availability of plasma pressure
distn'bution in force balance with the magnetic forces in an

empirical field model will further enhance its utilization.
Spence et o2. [1987, 1989] and Ka. et al. [1992] have

inverted the earlier magnetic field models [Tsy&anenko and
Usma.ov, 1982; Tsyganenko, 1987] to obtain the equilib-
rium plasma pressure along the tail axis at midnight by
assuming is)tropic or nearly isotropic plasma. The goal of
this paper is to extend these previous studies in deriving

empirical magnetic field models for the quiet time mag-
netosphere, with the associated plasma pressure in force

equih'brium with the model magnetic field and in gxxxi
agreement with observations. Two features are incorpo-
rated, namely, the presence of an eastward inner ring
current and the occurrence of anisotropic plasma pressure.
These two features are found to be essential in arriving at
a realistic plasma pressure proRle. This study treats the
simple situation in which the dipole tilt angle is zero,
making the configuration symmetric and easy to handle
without significantly altering the results.

Taz MoDn_z_ MAGsx_nc _ MODZLS

The magnetic field models of Tsygane_ko [1987, 1989],
hereaRer referred to as T87L (long version) and 'I"89, have

a number of features that lend themselves to easy applica-
tions. The magnetic field in these models is given in an

analyticalform,with most terms bearing physicalinsights
on the variouscurrentsystems contr1"outingto the total

magnetic fieldata givenlocation.The coefficientsofthese

terms are obtainedthrough a least-squaresfitto actual

measurements and are derivedseparatelyfor different

levelsof the Kp index to allowfor the variabilityof the
magnetic fieldwith geomagnetic activity.Since we con-

siderhere thequiettime magnetosphere,the activitylevel

chosen forthisstudycorrespondstotheKp = 0 level.Modi-

fiedversionsof these fieldmodels form the basis from

which magnetic fieldmodels are constructedhere.

The ringcurrentisdominated by the gradientofplasma

pressure.At theinneredge ofthe ringcurrent,the plasma
pressuredecreasesrapidlyinward,producingan eastward

flov,-ingringcurrentinthe innermagnetosphere [Laiand

Ham//ton, 1992].q_aisringcurrentisfeaturedin neither
the T87L nor theT89 model.Although thiseastward flow-

ingringcurrentmay notalterthemagnetic fieldtoa great

extent,as willbe demonstratedlater,itsabsencetremen-

douslyaffectstheplasma pressuredistn1_utionrequiredto
maintain equ_'brium with the magnetic forces.Without

such an eastward flowing current, the plasma pressure in
force equ_%rium with the magnetic field will have to in-
creasemonotonic.all,y inward,as indicatedby the earlier

work ofSpence_ a/.[1989]and gan eta/.[1992],and is

con_ary totheobservedplasma pressuredistribution.Even

though the requiredvolume currentdensityforthe east-

ward ringcurrentissmall,the J x B forceissignificant,

sincethe fieldstrengthishigh (aboutinverselypropor-
tionaltothe thirdpower ofthe geocentricdistance)inthe

inner magnetosphere.

To includethe innerringcurrentin the model,we con-

struct its vector potential using a procedure similar to the

one employed in the T89 model to represent the outer ring
current, i.e.,

AIR c = ClRCP_qI-R3C , (1)

where CIRc is a coefficient controlling the intensity of the
inner ring current and

Sm c = ,/p2 + (amc + _mc)=, (2)

_IRC = _ z2 4"(D e ÷ 71RC_IRC) 2 , (3)

The location of the point in space is given in cylindrical
coordinates by (p, @,z) and in Cartesian coordinates by (x,
y, z). The physical signif_ance of the nonlinear parameters
is the same as given for the outer ring current by
Tsyganenko [1989]. The radial scale length amc relates to
the geocentric distance for the inner ring current. The half
thickness of the inner ring current region is represented
by D.. The variation of this thickness with local time, i.e.,
the difference between dayside and nightside, is controlled

by the function hmc with its scale length Lmc. We fred
that the flow reversal of the ring current from westward to

eastward inside L = 3.5 can be reproduced reasonably well
by adopting the following values for the above parameters_
Cmc = 760 nT, airc = 1.5Rs,D e = 1.8R z,"rmc = -0.272,3

(same as the value forthe quiettime outer ringcurrent),

and/qltC = 1.5R E.To keep the totalmagnetic moment of

the ringcurrentsthe same as the originalringcurrentin

the T89 model, we have modified the outer ring current

strength by

C_,c =Co_ -cmc x (amc/ao_) = , (s)

where the subscriptsRRC and ORC denote,respectively,

the revisedand originalouterring currentparameters in

T89. Itturnsout thatthe modificationisextremely slight

(only ~0.2%). This modal with the inner eastward ring
currentand a cor_spondinglymodi_ed outerringcurrent

strength is identified hereaRer a.s T89R.
Since the T89 and T89R field models give rather weak

magnetic fields in themagnetotail [Sternand Tsyganen]w,
1992; Rostokeram/Skone, 1993; Peredo et ,d.,1993], we
have alsoexploredthe T87L fieldmodel. To take advan-

tage of the fact that the T89R model is better than the

T87L model in the inner magnetospheric region, but the
reverse is true for the distant tail [Tsyganenko, 1989;
Donovan et aL, 1992], we combine the two field models by
constructing a hybrid field model (designated hereafter as
TtD with a transition parameter _ such that

(6)

,=o.s-o.ssin =,.)-1)./2),
where B_ is the z component of the magnetic field along
the midnight meridian and subscripts 87L and 89R denote
parameters from the T87L and T89R models, respectively.
The parameters zL and x U are the lower and upper bounds
of x for the transition. The transition parameter ¢ is 0 at
x = xU and 1 at x = xL, with a smooth derivative de/d.z at
the end points. The boundary points adopted here are z u
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= -5 R E and xL = -25 RE. We note that the region of
interest in this paper is the equatorial plane along the tail
axis in which the magnetic field has only the z component
(for a dipole tilt angle of 0°). The divergence of the mag-
netic field along the tail axis therefore reduces to OBz/Oz.
It is clear then that the linear combination of the magnetic
fields from the T87L and T89R models as expressed in (6)
is also divergence free along the tail axis. On the other
hand, if this hybrid model were to be extended beyond the
tail axis, there would be s small nonzero divergence if the
other field components were not modified accordingly.

Figure la shows the profdes of magnetic field values in
logarithmic scale from the four magnetic field models, i.e.,
T87L, T89, T89R, and TH, at the equatorial region along
the midnight meridian. Note that the four magnetic field
profiles are quite different between z - -8 R K and -30 R E.
The highest magnetic field values come from T87L, fol-
lowed by TH, T89, and T891L Although the inclusion of the
inner ring current only slightly weakens the magnetic field,
this effect is manifested quite dramatica_y in the extremely
low field region of the T89 model, where the field magni-
tude goes below 1 nT.

The volume current densities from these four models at

the equatorial region along the midnight meridian are
examined in Figure lb. The T87L model typically gives the
lowest current densities among these models. Tailward of

x - -10 RZ, the "1"89and T89R models give almost the
same values, whereas the TH model shows noticeably lower
current densities between x = -10 and -30 R E. The lower
values from the TH model, in comparison with the T89

and T89R models, are expected from the influence of the
T87L model. Earthward of x - -10 Re, although the cur-
rent densities from the T89R and TH models are almost

10 s

10 I

U 10 _

! 0 "'_

, _, i ,,, _ i ,,, , i ,,, ]'1,', _', i', • • • i , , , ,:

!\! i i _ i i i
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identical, those from the "1"89and T87L models have differ-

ent values. Earthward of z = -8 R E, both the "1"89 and
T87L models show a persistent westward current. In con-
trast, the TSgR and TH models show a reversal of west-

ward ring current to an eastward ring current at -3.5 R E-
The presence of this current reversal is modeled to repre-
sent the reversal noted from the CCE observations [Lai
and Hamilton, 1992]. In comparison, we find the observed

current densities appear to be higher than the model val-
ues at the current density peak hut smaller than the model
values at distances further downstream. In addition, the

observed current densities are more variable, reflecting the
fdamentary nature of current much like the magnetota_
current [McComas e_ a/., 1986].

The observed anisotropy of plasma pressure taken from

Lui and Hamilton [1992] is shown in Figure 2 together
with an empirical fit. The anisotropy is seen to be large in
the inner region and decreases rather systematically at
distances further downstream. The empirical fit to the
anisotropy is a fifth-order polynomial function of x -l, i.e.,

P.L/J_ - 1 = ao + alx -x + a,zx -2 + aox "a

+ a4X "4 + o_d_e -6 ,
(8)

with coefficients a0 : -0.4105,54, a I = -9.94369, a2 =
-86.9877, a s = -504.066, a 4 = -1110.73, and a 6 :
-847.912. The range of validity for this fit is -2.5 RIz > x
• -15 RE such that the plasma pressure is isotropic at
- -15 R E. That the pressure should be isotropic down-
stream ofx - -15 R£ isindicatedby the studiesof St//_
etal.[1978]and Baumjohann and Paachmaan [1989].

Given a magnetic fiddmodel, itisstraightforwardto

compute the magneticforcej × B end determine the pres-

sure forcerequiredtobalanceit.The radialprofdeofper-

pendicularplasma pressurecan be obtainedby integrating

_P_ = [j × S + (P_ - P|Xb. V)b Li_"
(9)

where the subscript r indicates the radial component of
the vector quantity, b is the unit magnetic field vector

B, j is the volume current density, and P± and PI are the
plasma pressure components perpendicular and parallel to
the observed magnetic field direction, respectively.

Figure 3a shows the result from this computation for
the T89R model with the plasma pressure at x = -34 R E
taken to be 0.074 nPa. _his initial value of plasma pres-

w_. ,lit : TI.'J. _tSR, _ (b)

. : sure is obtained by computing the plasma pressure re-
, ...................... b- ...... : ...........i........... - ...........

• I I
o _ _ _ _ i ! i o_ z°t',t-"r .......... i............ I............._...............t ...............i......
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Fig. 1. (a) Magnetic field profiles along the midnight meridian at
the equatorial plane from four magnetic field models. (b) Current X
density prot'fles along the midnight meridian at the equatorial Fig. 2. Observed pressure anisotropy profile of the nightside mag-
plane from four magnetic field modeh, netosphere and an empirical fit.
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Fig. 3. (a) Equatorial profiles of the perpendicular plasma pres-
sure along the midnight meridian inverted from the T89R mag-
netic field model assuming isotropic plasma pressure (dashed
trace) and adopting the pressure anisotropy shown in Figure 2
(solid trace). (b) Equatorial profile of the perpendicular plasma
pressure along the midnight meridian inverted from the T89R
magnetic field model in comparison with measured values ofper-
pendiculsr plasma pressure from several satellites.

quired at the neutral sheet (z = 0) to balance the "asymp-
totic" magnetic field value for the tail lobe region of the
T89R model at that distance. The °asymptotic" magnetic

field value is the z component of the field at z = 20 R 8,
which in this case is -13.6 nT. It is worth noting that since

the plasma pressure is shown in logarithmic scale, a larger
initial value for the plasma pressure will not affect the

plasma pressure in the inner magnetosphere significantly.
The plasma pressure is assumed isotropic at x = -15 R%
and fttrther downstream. The computed profile of the per-
pendictdar plasma pressure is given by the solid trace. For
comparison, the profile of plasma pressure, assuming pres-
mare _otmpy at all distances, is given by the dashed trace.
It is quite apparent that the assumption of isotmpic pres-
sure results in an underestimate of the plasma pressure at
the inner magnetosphere by as much as a factor of -3.

finding can readily be understood by noting that the
plasma pressure anisotropy inside x - - 15 R_z for the quiet
time magnetosphere is in the sense of P± > PI" With this
sense of pressure anisotropy, the second term on the right
of equation (9) adds to the first one, thus requiring a larger
pressure gradient for force equilibrium, as pointed out
earlier by Lu/and Hamilton [1992].

The computed perpendicular plasma pressure profile is
compared with observations from Explorer 45, ATS 5, ISEE
2, and CCE in Figure 3b. The ISEE 2 data are taken from
Spen_ et aL [1989] for the Kp = -1 condition, the CCE
data from Lai and Hamilton [1992], the ATS-5 data from
DeForest and McIlwain [1971], and the Explorer 45 data
from Spence et a]. [1989], using measurements of 1- to

872-keV protons presented by Smith and Hoffman [1973].
The range of pressure values from Explorer 45 data indi-
cated by the error bars actually spans the observed pres.
sure taken during geomagnetically quiet to disturbed con*
ditions, and thus the lower limit should be used for com-
parison with the model caJculation. As can be seen from
Figure 3b, the model pressure profile is in general above
the observed pressure profile, especially in the outer re-
gion. This finding is understandable and is to be expected
because the observed pressure is not necessarily obtained
right at the equatorial plane and thus is expected to
underrepresent the actual observed pressure at the equa-

torial plane. Inside 4 R E, the pressure determined from
Explorer 45 is noticeably lower than that from CCE values
and the model calculation. This difference may be due to
the upper energy threshold being only 872 keV for Ex-
plorer 45 measurements, whereas that of CCE extends to
>4 MeV. It is poss_le that a significant contn_tion to

plasma pressure inside4 RE comes from particlesabove
the872-keV level.We have evaluatedthisposs_ilityusing

severalmidnight passesof aCE during quietconditions.

We found the ions with energy of >872 keV contributing

typically-50-65% to the plasma pressure at geocentric

distancesinside4 R B.Since the disparityin the determi-

nationofpressure between Explorer45 and CCE isabout

a factorof 6,we conclude that the differentenergypass-

bands can account for a significantportion,but not the

entirety,ofthe observed pressure difference.

Overall,we find very good agreement existsbetween

the observed and computed profilesofplasma pressureon
the basisof the T89R model. Another notablefeatureof

the model pressureprofileisitsrelativeconstancybetween

the downstream distancesof 16 and 25 R£. This finding
indicatesthe small magnitude of the j x B forcein this

region.Reexamining Figure I revealsthatthe main rea-

son forthe decreasein the j × B forceinthe T89R model

is the small value of the magnetic fieldin that region

(Figurela),sincethe volume currentdensityisstillsub-

stantialat those distancesCFigurelb).The more abrupt

change in the radial profde of plasma pressure occurs in
the downstream distances between x - -12 R B and x -
- 15 Rg, as noted earlier by Spence eta]. [1989]. The j X
B force is therefore relatively large at the transition region

between the clipolelikeand taillikefield conf_mrations. It
is interesting to note that this region may correspond to
the hinging point of the taft, where the tangential stress
acted on the magnetotail by the solar wind at the taft
magnetopause is balanced by the attractive force between
the Earth'sdipoleand the tailcurrentsystem [S/scoe and
Cummings, 1969].

A similarplasma pressure profile can be obtained from
the TH model, as shown in Figures 4a and 4b. The plasma
pressure based on the formula from Spence and Kivelson
[1993],

P(nPa) = 89e -°sg_ + 8.91x 1-1"_ (i0)

is also shown for comparison; the downstream distance x
is in Earth radiL The assumption of isotropic pressure
gives an underestimate of plasma pressure by as much as
a factor of -3 in the inner magnetosphere as before. The
most significant difference between the two anisotropic
pressure profiles in Figures 3 and 4 lies in the downstream
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e of -

sen region ofx--10 to -20 R E. Whereas the T89R profile
'ing : shows a relativelyconstantpressurein _ region, the
his other profilsshows a continuouspressureincreasetoward

_a- the Earth.This continuousrise,however,onlycontributes
del ratherinsignificantlytotheplasma pressureearthward of
"ion x - -8 R x._he continuouschange inplasma pressure re-
ab- flects a more gradual transition bet'ween the dipelelike and

_pt taillike field configurations as well as a more x-dependent
m pressure for the near-Earth tail region in this model than
" that in the T89R model.The empiricalformulaby Spen_
x and Kiuelson [1993] also compares reasonablywell with

)n the model profile.The formulagivesa good fit to the plasma
It pressure withinthe range ofx- -2.5 to-15 RX but over-
to estimates it inside this region and underestimates it fur-
ss ther tailward.
dl
'n SUMMARY AND DISCUSSION

c/ We have investigatedtwo empiricalmodelsforthe speci-

ficationofmagnetic fieldand the plasma pressureforthe

n quiet time nightside magnetosphere. The derived magnetic
a fieldmodels are extensionsofthe previousmagnetic field

z models of Tsyganenko [1987, 1989] by the addition of an
inner eastward ring current. Furthermore, in constructing
the equih%rium plasma pressurealongthe tailaxisin the

midnight meridian,we have taken intoaocountthe pres-

ence of plasma pressureanisotropyin the inner magneto-
sphere earthward ofx--15 R E.An empiricalfitto the

observed pressure anisotrepy in the inner magnetosphere
(between 2.5 and 15 Rz) isalsoprovided._Fnesetwo new

featuresprofoundlyaffectthe deduced plasma pressure

profzle.The firstfeatureleadsto an earthward reduction

of the plasma pressure in the innermost part of the mag-

netosphere(geocentricdistancesof < -3 Rz) as observed.
The _cond featureleads to an appropriateevaluationof

the plasma pressuregradient.Without the consideration

ofplasma pressureanisotrepy,the deduced plasma pres-
sure may be underestimatedby as much as a factorof-3.

The derivedperpendicularplasma pressureisfound tobe

ingood agreement with the observedvaluesfrom ISEE 2,

CCE, ATS 5,and Explorer45.The T89R and TH models

thereforeprovidequiterealisticrepresentationsalongthe

tailaxis in the midnight meridian ofnot only the quiet

time magnetic fieldbut _ the associatedequih_orium

plasma pressure distHbution_ needed to provide the foroe

helanco with the magnetic forces in these medeh. The rang_
of validity for the T89R and TH models in representing the
magnetic field, the volume current density, and the aniso.

tropic plasma pressure considered here is -2.5 R z • z •
-35 Rz. "fine present result also support_ the earlier find-
ings from Spence eta/. [1989] that the gradient of plasma
pressureshows a relatively large change in the transition
regionbetween dipoleh3mand taillikefieldconflguration_

A regioncalledthe inner edge ofthe plasma sheethas
been introducedin the early_udies ofthe energeticpar-

ticle environment in the magnetosphere [Vasyliunas, 1968;
F_unk, 1971]. It is a region characterized by an exponen-
tial decrease of electron ener_, density with decreasing
radial distanceand is generally locatedat geocentric dis-

tances of -6 to 8 Rz in the nightside. Many researchers
implicitly assume that the inner edge of the plasma sheet
is associated with an earthward decrease of the total plasma
pressure, and theorieson the closureof the large-scale
region2 field-alignedcurrentsystem [/Uimaand Potem_a,

1978] have been builtupon thisassumption (see,forex-

ample, thereviewby Mauk and Zanett/[1987]).As pointed

out by Mauk and Zanetti[1987],the observed plasma

pressureshows a persistentearthwardincreaserather than
a decreasein the geocentricdistancesusury _'bed to

the inneredge oftheplasma sheet.Interms oftotalplasma

pressure, there is no edge at those distances. The plasma
commonly identified as constituting the plasma sheet in
the outer magnetosphere (tailward of the geocentric dis-
tance of -I0 R_) graduallybecomes the hot ring current

particlepopulation.The absenceof a large-scaleplasma

pressuredecreaseinthese-c_ed inneredge ofthe plasma
sheet indicatesthe necessityto modify the conventional

mechanism forclosingthelarge-scaleregion2 field-aligned

current.An alternativemeans forthe region2 field-aligned

currentclosurein an earthward increasingplasma pres-

sure condition has been proposed by Lu/ and Hamilton
[1992]. They have suggested, based on the work of Sato
and I_jirna [1979], that the correct sense of field-aligned

current will be generated if the VP_. vector is inclined to-
ward the midnight meridian more than the VB vector in
hoth the premidnight and the postmidnight sectors, since
the sense of the field-aligned current is determined by the
sign of the triple product of B, VP,, and VB. Figure 5
illustrates this configuration graphically. In other words, a
plasma pressure in the midnight sector slightly enhanced
over that of the adjacent local time sectors will satisfy the
requirement.

At leasttwo aspectsofthisstudy can be improved in
the future.One istoextendthe calculationtootherlocal

times besidesmidnight,and the second isto extend itin

the z directiontocoverthe regionaway from the equato-
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Fig. 5. A schematic diagram to illustrate the relative orientation
of the vectors VB and VP_ to give the correct sense of the field-
aligned current system for region 2.

rial plane. The former extension requires a better assess-

ment of the variation of pressure anisotropy as a function

of local time, which is not presently available. The latter

extension requires integrating the variations of both the

perpendicular and parallel components of the plasma pres-

sure in a plane. If these extensions were to be incorporated

in the TH model, one must also address the extension of

the divergence-free property of the magnetic field along

the tail axis to other regions in the magnetosphere, which
can be accomplished by considering a linear combination of

the vector potentials of the T87L and T89R models instead
of their magnetic fields. These improvements will be the

subject of a future investigation.

A,-know_dsmentt We would like to thank N. A. Tsyganenko
for providing his earlier magnetic field models on which the new
models are built. This work was mzpported by the Atmospheric
Sciences Section of the National Science Foundation (Grant ATM-
9114316 to the Johns Hopkins University Applied Physics Labo-
ratory). The work at The Aerospace Corporation wu supported
by the Space Physics Program of the National Aeronautics and
Space Administration under Grant NAGW-3353.

The Editor thanks T. Pulkkinen and 1t. H. Comfort for their

assistance in evaluating this paper.

REFr.S_CES

Baumjohann, W., and G. Paschmann, Determination of the
poly_ie index in the plasma sheet. Geophys. Res. Lear., 16,
295, 1989.

Barn, J_ Three-dimensional equih_ria for the extended magnetotail
and the generation of field-aligned current sheets, J. Gco-
phys. R_., 94, 262, 1989.

Chen_ C. 7-, Magnetospheric equih%rium with anisotropi¢ pres-
sure, J. Oeophys. Re*., 97, 1497, 1992.

Denovan, E. F., G. Rost_ker, and C. Y. Huang, Region of nega-
tive B= in the Tsyganenko 1989 model neutralsheet,J. Geo.
phys. ICe=., 97, 8697, 1992.

EIphinstone, Ft. D., and D. J. Hearn, Mapping of the auroral
distribution during quiet times and substorm recovery, Eur.
Space Agency Spec. Publ., ESA SP 335, 13, 1992.

Elphinstone, It. D., K. Jankowska, J. S. Murphree, and L. L.
Cogger, The coni_gazration of the auroral distr_ution for in-

terplanetary magnetic field B, northward, 1, IMF Bland B_,
dependencies as observed by the Viking satellite, J. _cophys.
Ree., 95, 6791, 1990.

Erickeon, G. M., On the cause of X-line formation in the near-
Earth plasma sheet: Results of adiabatic convection of plasma
sheet, in Magnetic Reconnection in Space and Labor_tor7
Plasmas, C,eophys. Monogr. Set., vol. 30, edited by E. W. Hones,
Jr., p. 296, AGU, Washington, D.C., 1984.

Erickson, G. M., and K K Wolf, Is steady state convection pos-
s_le in the Earth's magnetosphere?, Geophys. Re,. Lear., 7,
897, 1980.

Frank, L. A., Relationship of the plasma sheet, ring current.
trapped boundary, and p_sm_pausa near the magnetic equa-
tor and local midnight, J. Geophy_. Res., 76, 2265, 1971.

Harris, E. G., On a plasma sheath separating regions of oppo-
sitely directed magnetic field, Nuovo Cimento, 23, 116, 1962.

Hau, L. N., R. A. Wolf, G. H. Voigt. and C. C. Wu, Steady state
magnetic field configurations for the Earth's magnetotail, J.

Geophys. /tea., 94, 1303, 1989.
Hesse, M., and J. Birn, Three-dimensional MHD modeling of

magnetotail dynamics for different polytropi¢ indices, J. Geo-
phys. Re*., 97, 3965, 1992.

Kan, J. P_, On the structureofthe tailcurrent sheet, J. Geophys.
Res., 78, 3773, 1973.

Kan, J. K, W. Sun, and W. Bsumjohann, A hybrid equation of
state for the quasi-static central plasma sheet, Geophys. Re*.
Left., 19, 421, 1992.

Iijirna, T., and T. A. Poterara, Large-scale characteristics of field-
aligned currents assodated with substorms, J. Geophy,. Re,.,
83, 599, 1978.

Kivelson, M. G.. and H. E. Spence, On the posm%ility of quasi-
static convection in the quiet magnetotail, Geophys. Re*. Lett..
15, 1541, 1988.

Lui,A. T. Y., snd D. C. Hamilton,Radial profilesof quiettime
msguetoepheric parameters, J. C,cophys. Res., 97, 19,325, 1992.

Mauk, B. H., and L. J. Zanetti, Mngnstospheric electric fields
and currents, Reu. Geophya., 25, 541, 1987.

McComsa, D. J., C. T. Russell, 11.C. Elphi¢, and S. J. Barns, The
near-Earth cross-tall current sheet: Detailed ISEE 1 and 2
case studies, J. Geophy_. Re*., 91, 4287, 1986.

Perodo, M., D. P. Stern, and N. A. Tsyganenko, Are existing
magnetospheric modell excessively stretched?, J. Gcophys.
Re*., 98, 15,343, 1993.

Pulkkinen, T. I., R. J. Pellinen, H. E. J. Koskinen, H. J.
Opgenoort_ J. S. Murphree, V. Petrov, A. Zaitzev, and E.
Friis-Christensen, Auroral signatures of substorm recovery
phase: A case study,inMagnetospheric Substorms, C,eophys.
Monogr. Ser., voi. 64, edited by J. 1_ Kan, et al., p. 333, AGU,
Washington, D.C., 199_

Rostoker, G., and S. Skone, Magnetic flux mapping consider-
ations in the aurora] oval and the Earth's magnetotail, J.
Geophys. Re*., 98, 1377, 1993.

Sato, T., and T. Iijima, Primary sources of large-scale Birkeland
currents, Spa_ Sci. Rev., 24, 347, 1979.

Sekopke, N., A study of _lf-consistent ring current models, Cos-
rn_ E/ectrodym:Lm/_, 3, 330, 1972.

Siscoe, G. L., and W. D. Cummings, On the cause of geomagnetic
bays, Planet. Space SdL, 17, 1795, 1969.

Smith, P. H., and R. A. Hoffman, Ring current particle distn"ou.
tions during the magnetic storms of December 18-18, 1971, J.
Geophys. P_., 78, 4731, 1973.

Spence, EL E., and M. G. Kivelsoa, ContHb_tiorm of the low-
latitude boundary layer to the finite width magnetotai] con-
vection model, J. Geophys. Re*., 98, 15,847, 1993.

Spence, H. E., M. G. Kivelson, and R. J. Walker, Static magnetic
field models consistent with nearly isotropic plasma pressure,
Geophys. Re*. Lear., 14, 872, 1987.

Spence, H. E.,M. G. Kivelson,K J.Walker, and D. J.McComas,
Magnetospheric plasma pressuresin the m_dnight meridian:
Observations from 2.5 to 35 Rz, J. Geophys. Res., 94, 6264,
1989.

Stasiewicz, Polar cusp topology and position as a function of
interplanetary magnetic field and magnetic activit_ Compari-
son of a model with Viking and other observations, J. G¢o-

phys. Re*., 96, 15,789, 1991.
Stern, D, P., and N. K "l_nenke, Uses and limitations of the

Tsyganenko field models, Eo, 2Ven,. AGU, 73, 489, 1992.
Stiles, G. S., E. W. Hones, S. J. Bame, and J. R Asbridge, Plasma

sheet pressure anisotropies, J. Geophy_. Re*., 83, 3186, 1978.

Toi

T_.

T_'_
r

c

I

Vo_
[
(

W_
¢

(



,f

f
;°

:.

3

2

LL'I E'TAt-: ._¶O.'JDJ'_GOF QL-IEI"

Toichi, T., Two-dimensional equilibrium solution of the plasma
sheet and its application to the structure of the tail magneto-
sphere, Cosmic Electrodyr_mics, 3, 81, 1972.

Tsyganenko, N. A., Global quantitativemodels of the geomag-
neticfieldin the cislunarmagnetosphere fordifferencedis-
turbance levels,Planet.Space Sci.,35, 1347,1987.

Tsyganenko, N. A.,A magnetosphericmagnetic fieldmodel with
Itwarped tailcurrent sheet,Planet.Space Sci.,37, 5, 1989.

Tsyganenko, N. A., and A. V. Usmanov, Determination of the
msgnetospheric currentsystem parameters and development
ofexperimental geomagnetic fieldmodels basedon data from
IMP and HEOS satellites,Planet.Space Sci.,30,98,5,1982.

Voigt,G.-H.,and l_ A. Wolf,Quasi-staticmagnetosphericMHD
processesand the =ground state"ofthe magnetosphere,Rcv.
Gcophys.,26, 823, 1988.

Walker, R. J.,and D. J.Southwood, Momentum balanceand flux
conservation in model magnetospheric magnetic fields,J.

Geophys. Res.,87, 7460, 1982.

T1ME N]GHT_IDE ,_LAGNETOSPHKK£

Vasyliunas,V. M., A surveyoflow-energyelectronsinthe evening
sectorof the magnetosphere with Ogu I and Ogo 3,J. Geo-
phys. Res., 73, 2839, 1968.

Zavriyev, A., and A_ Hasegawa, The equilibrium dayside mag-
netosphere, J. Ceophy=. Re=., 94, 10,039, 1989.

A. T. Y. Lui,Applied PhysicsLaboratory,The Johns Hopkins
University,Johns Hopkins Road, Laurel,MD 20723.

H. E. Spence, Space and Environment Technology Center,

The Aerospace Corporation, Los Angeles, CA 90045.
D. P. Stern, Laboratory for Extraterrestrial Physics, NASA

Goddard Space Flight Center, Greenbelt, MD 20771.

(Received April 15, 1993;
revised July 12, 1993;

accepted September 8, 1993.)

J

C

l-



Pergamon

0273-1177(95)00991--4

Ad* SpaceRts Vc_. 18. No. 8. PP" _,8)217--(8h228. 1996

ColwJn$1"_ _ tq_5 COSPAR
Pr'tmed m GreAt Bntam. All nt, hu rr._ved

0273-1177_ $9.50 + 0.00

CRRES OBSERVATIONS OF PARTICLE

FLUX DROPOUT EVENTS

J. Fennell, 1 J. Roeder, i H, Spence, 2 H, Singer) A, Korth, 4

M. Grande 5 and A. Varnpola 6

I The Aerospace Corporation, P.O Box 92957. los Angeles, CA 90009.

USA.
2 Boston University. Boston. MA 02215. U,S.A.
3NOAA R,'E/SE, Boulder, CO 80303. U.S,A.
4 Max Planck Institute for Aeronomy. Lindau. Germany
5Rutherford Appleton National Laboratory, Chillon. Didcot, Oxfordshire.
UK
6 P.O. Box 10225. Torrance, CA 90505, US.A

ABSTRACT

The complete disappearance of energetic electrons was observed by CRRES in the near geosyn-

chronous region in 7.5% of the orbits examined. These total flux dropouts were defined by the

fluxes rapidly dropping to levels below the sensitivity of the MEA energetic electron spectrometer on

the CRRES satellite. They were separated into those that were only energetic electron dropouts and
those that were associated with energetic ion and plasma dropouts. Approximately 20% of the events

showed dropouts of all panicle fluxes, and these were usually coincident with large increases in the

local magnetic intensity and signatures of strong current systems. The energetic particle instruments
and magnetometer on CRRES provide a detailed picture of the particle and field responses to these

unusual conditions. Both the local morning and dusk events were associated with strong azimuthal

(eastward) and radial changes in the magnetic field indicative of a strong current system approaching
and sometimes crossing the CRRES position at the time of the flux dropouts. The direction of the
field changes and the details of particle observations are consistent with CRRES passing through the

plasma sheet boundary layer and entering the tail lobe for a significant number of the events.

INTRODUCTION

Changes in the energetic panicle distributions at near geosynchronous altitudes are often observed in

association with substorm processes and the large scale boundary motions that often accompany them

/1/. For example, on the dayside, the compression of the magnetosphere by solar wind pressure
pulses can move the magnetopause inside the geostationary orbit/2,3/. This is evidenced by the

"dropout" of energetic panicle fluxes observed by spacecraft in the dayside magnetosphere/2,3.4/.

This occurs because the interplanetary energetic particle fluxes are orders of magnitude lower than
those found inside the magnetosphere. Thus, when the boundary is "pushed" earthwards of a mag-

netospheric satellite's orbital position, it changes from observing high magnetospheric fluxes to
observing the low interplanetary flux in a very short time (i.e., the flux drops out), It is relatively

uncommon to observe such magnetopause crossing events near geosynchronous orbit /2/. In the
nightside magnetosphere, the distortion of the geomagnetic field caused by the intensified cross-tail

currents which arise during the substorm growth phase can cause significant modification in the
energetic particle angular distributions and intensities. These can become so extreme as to cause

complete flux dropouts of the energetic particles (see for example refs. /5/ and /6/). Normally, such
signatures are observed in the midnight sector, and often the fluxes only decrease drastically but do

not totally drop out. If magnetospheric satellites enter the tail lobe, u,hich does not contain signifi-

cant fluxes of energetic particles under normal conditions, the energetic particles would "drop out".

Normally, near-earth satellites, such as those with orbits that do not extend beyond geosynchronous
altitudes, do not enter the tail lobes. Often the post-dropout recovery of the energetic panicle fluxes

are associated with the expansion onset of a substorm/5/, it is relatively uncommon to observe strong

energetic particle flux dropouts in the dawn and dusk sectors/1/. Konh et at./7/has recently reported
the occurrence of energetic particle dropouts in the local morning sector and Moldwin et at./8/have

(812i7
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observed flux dropouts at nearly all local times and tail lobe entry by geosynchronous satellites from

dusk to dawn in the nightside magnetosphere. In this paper we use data similar to that of Konh et at.
/7/ but extend the study to include all local times reached by CRRES (Combined Release and

Radiation Effects Satellite). By using the local magnetic field and panicle data in combination we

can show the relationship between the panicle dropouts and the active current systems at the time of
such events.

INSTRUMENTATION

The CRRES satellite was launched on 25 July 1990 into an elliptical orbit with a geocentric perigee of

--6720 kin, apogee of -39950 km and an inclination of 18.15*./9/ The initial local time of apogee
was -8.7 MLT, and after 1072 orbits (near end of life 14 October 1991) it was at -14 MI,T. The

orbital inclination in combination with its -,0.6 hour orbital period and the Earth's tilted magnetic

dipole allowed CRRES to reach L shells up to and somewhat beyond I.,=8 on a regular basis. The
CRRES near apogee altitude coverage has some gaps in local time. These are the local time intervals

near noon on the dayside (from -09 through 13 MLT) and in the early post-midnight region near 01

MLT. The post-midnight coverage gap resulted from the suspension of instrument operations during
the CRRES near-apogee eclipse periods.

The instruments used for this study are primarily the Medium Electrons A (MEA) Spectrometer/10/,
the Magnetosphere Ion Composition Sensor (MICS)/11/, and the CRRES magnetometer/12/. We

have also examined some EPAS (Electron and Proton Wide-Angle Spectrometer) data/13/and the
LEPA (Low Energy Plasma Analyzer) data /14,15/ to determine whether a plasma signature was

present or not. The MEA measures electrons from -153 keV to 1.5 MeV in 17 differential energy
channels/10/, while the MICS measures ions from -1.2 to 426 keV/charge with ion charge and mass

composition over mass dependent energy ranges/11/. The MEA and MICS sensors are mounted

perpendicular to the CRRES spin axis, which is sun pointed at all times, and cover a relatively wide
range of panicle pitch angles during a spin period (-30 sec). The EPAS sensor covers the energy

ranges of 21 - 285 keV and 37 - 3200 keV for electrons and ions, respectively/13/. EPAS has mul-

tiple fields of view (FOV) and, by combining the data from the multiple FOV, basically obtains a
complete pitch angle distribution every spin period. The LEPA also has multiple FOV and provides

complete pitch angle coverage of electrons and ions with energies of 0.12 to 28 keV/q. In the LEPA
summary data referenced here/15/, only the precipitating and perpendicular plasma electron and ion
fluxes were available.

OBSERVATIONS

For this study we required that the one-minute spin-averaged MEA fluxes, at all energies > 153 keV,

drop to background levels. This is a rather stringent requirement and basically deletes most of the
growth-phase-only signatures/5/from the study. The MEA criteria were selected because of the easy

access to the data and the large geometric factor and good sensitivity of this instrument (see Table I).
The total MEA flux dropout to background levels was chosen to eliminate the more usual flux

decreases that occur commonly in the magnetosphere near geosynchronous altitudes. A total of 117

flux dropout events met this requirement between CRRES orbits 76 and 1065 (from 26 August 1990
through !1 October 1991). There were as many as five separate flux dropouts observed in a single

orbit. In total, the 117 dropouts were distributed over 70 orbits, as shown in Table 2.

The 117 events were further reduced to those which showed a dropout of the energetic ions

(>_20 keV). Only 53 events satisfied this criterion. Finally, we selected only those events which
showed a dropout of the plasma ions and plasma electrons, respectively, as shown in Table 2. From
the initial selection of 117 events, only 20 showed a dropout of all panicle fluxes.

Flux dropouts were observed to occur at all local times on the nightside magnetosphere. (We
specifically eliminated obvious cases of magnetopause crossings from this study.) The most unex-

pected regions for them to occur are the local rooming and local evening. In these regions the mag-

netic field topology is usually fairly dipole-like for L shells below 7, Thus, we expect that the
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distorted magnetic configuraUons that lead to flux dropouts should be rarely observed there by

CRRES, even at the moderate latitudes it attains. Also, one would naively expect that the local

morning and local evening occurrences should show similar features. We present below one case

each of local evening and local morning flux dropouts as examples of the phenomena observed by

CRRES before we discuss the statistics of the dropouts. It should be noted thal CRRES was in the

northern hemisphere near local morning apogee and in the southern hemisphere near local evening

apogee.

TABLE I. Instrument Parameters

Geometric Factor Minimum Measurable Flux

_CS

L_A

2.14 - 5.88 cm 2 st key

[ref. /10/]

4.4 x !0 "3 cm 2 sr keV

[ref. /I 1/]

- 3 x I0"3 Elect_ons/(cm2 se.csrkeY)

- 23 loml(cm2 secs_keY)

- 5 x tO4 particles/(cm2 sr)at0.12keV
[esl_n_ed from summary spec_ograms]

Energetic Electrons

Energetic Ions

Plasma Ions

Plasma Electrons

All Particles

TABLE 2, Particle Flux Dropout Statistics

Number of Kp Value IDst I Value

Dropouts Orbits < 3 3 - 6 > 6 < 30 30 . 100 > I00

117 70

53 34

33 20

23 14

20 14

17 65 35

6 27 20

0 20 13

0 17 6

0 15 5

34 46 37

13 21 19

5 15 13

4 I0 9

4 I0 6

Number of orbits examined = 944

Loca! Evening Flux Dropou_

An example of an event which showed the dropout of all panicle fluxes on the local evening side of

the magnetosphere is presented in Figures 1 and 2. Figure 1 shows the energetic electron data from

MEA for this event, which occurred during CRRES orbit 767 on 5 June 1991. The flux from several

different electron energies are shown on the plot, with the highest trace being that of the - 153 keV

electrons. The decreasing flux levels correspond to increasing energy. The bold trace represents the

response of a "background" monitor (BKG) within the MEA. The -153 keV electron fluxes were

requited to drop to or below the BKG level before they were identified as a total flux dropout. There

were three such periods of total electron flux dropout identified in Figure 1: one near 1500 UT at

I,=7.0, 17.g MLT and -21.8 ° magnetic latitude (MLAT), the second near 1600 LIT at !.,=7.4, lg.5

MI..T and MLAT = -21.6 °, and the third near 1850 UT at L=6.0, 20.7 MI.T and MLAT = -18.5 °.

The lower panels of Figure 2 show energy-time spectrograms of several channels of MICS data for

the same orbit. DCR is a measure of the total ion flux independent of species and thus is similar to

the measurement made by a total ion plasma instrument such as the LEPA, only at somewhat higher

energies (~ 7 - 400 keV/q versus 0.12 - 28 keV/q). The MICS "> Alpha" channel represents the total

flux of all ions with mass > 4 AMU. The other channels measure the fluxes of the H +, He +, He ++

and O + above a mass dependent energy threshold 111/. There are periods in the MICS data where

essentially all ions dropped out, especially during the 1600 UT event. Note that each O + spectrum

has been averaged over 8 minutes, which means there were a few counts in each interval that straddles
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Fig. 1. Energeticelectron fluxes from the CRRES MrEA sensorduring orbit 767 on 5 June 1991. The

topmosttrace is the flux of -153 keV electrons and the succeedingtraces are for successivelyhigher
energies/9/. The bold line representsthe responseto a background monitor (BKG). The -153 keV

electro4n fluxes were required to be at or below BKG in order to qualify as a flux dropout for this study.

For this period, the energetic electron flux dropouts occurred al 54100, 57600 and 67800 sec (or 1500, 1600
and 1850 UT).

the flux dropout's edges. It should be noted that the He + flux dropped well before the rest of the

ions and that it recovered later than the other ions too. This relationship between the two charge
states of Helium was often observed in the flux dropout events. This would be expected if He ++ is

presumed to be the dominant He ion in the outer magnetosphere, as is expected for a solar wind
source in which He + is generated via charge exchange from He ++ . The He + would be most prevalent

on the lower L shells deep inside the plasma sheet. If the flux dropout were the result of a
reconfiguration of the magnetosphere that caused the CRRES satellite to be on field lines that thread

the distant tail neat the interface between the plasma sheet and tail lobe field lines, then the ion com-

position just prior to and just after the flux dropout should reflect that of the distant plasma sheet, as

was apparently the case for this event.

The upper three panels of Figure 2 show the magnetometer measurements for this event. The data

are presented as the differences between the Tsyganenko 1987 field model/16/ for Kp = 3 and the
observed values. The direction ( I_ ) was taken as the Tsyganenko field direction. The reference

• A A

coordinate d=rections i_, r and w are in the directions parallel to the Tsyganenko field, earthward in
the plane containing I_and the radius vector from the center of the earth to CRRES and westwards,

respectively, as shown in Figure 3.

_)Bb, i_Br and bBw are the differences (residuals) between the measured and the Tsyganenko model
field. As can be seen by the magnitudes of these components, especially o3Br, the magnetic field

intensity at CRRES was stronger than normal and very "tail-like'. There was also a significant, but

varying, westward component. The large bBr and 3Bw indicate that strong currents were flowing in
the neighborhood of CRRES. Specifically, near the onsets of the panicle dropouts, the field became

more tail-like and rotated from a westward to an eastward direction. At each flux recovery the field

became less tail-like (although still much more tail-like than normal) and rotated back towards the

meridian plane (where bBw = 0). In particular, a strong dipolarization occurred in conjunction with
the ion flux recovery near 1515 LIT. A second (momentary) and third dipolarization occurred near

1620 UT, where there was first a short ion flux recovery with subsequent dropout followed by a per-
manent ion flux recovery near 1628 UT (see DCR in Figure 2 near 15200-1530 UT). These field
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signatures are consistent with the CRRES satellite having been approached and crossed by a Region !
current system as the particle fluxes dropped out and then recovered.

While there was a total energetic electron flux dropout near 1850 LIT, there was not a comparable

dropout in the energetic ion fluxes. The intensification of the ion fluxes near 1700 LIT (61200 sec)

occurred simultaneously with a weak energetic electron recovery. The ion fluxes returned to lower
levels by 1730 UT, which is just prior to the electron flux recovery that peaks near 1752 UT.

The plasma data (not displayed here) showed a total plasma electron dropout in conjunction with

both of the energetic ion dropouts in Figure 2. The plasma ions also dropped out but only just prior

to the energetic particle flux recoveries near 1515 LIT and 1625-1628 LIT. Both the plasma electrons
and ions showed the same momentary flux recovery, subsequent short dropout and final recovery

during this latter period, as was observed in the energetic ions (ref. Figure 2). Like the energetic
ions, the plasma data did not show a flux dropout near 1850 UT and indicated that CRRES remained

in a hot plasma sheet plasma. The only other significant feature in the plasma data was the occur-

rence of low energy (< ! keV) field-aligned electron fluxes just prior to and immediately after the
plasma and energetic particle dropouts discussed above.

Local Morning Flux Dro_ut

Figure 4 shows an example of energetic electron total flux dropouts observed by CRRES near local

morning on 7 September 1990. There were five flux dropout intervals (marked by shaded vertical
bars in Figure 4) which started near 1300, 1308, 1320, 1332 and 1409 UT. We have plotted the

CRRES magnetic difference data (as discussed above) on the same plot for comparison. Note that the

OBr was positive when the magnetic field had tail-like conditions because CRRES was in the northern
hemisphere, whereas c3Br was negative during the local evening tail-like conditions discussed above.

n o
-25

,_ew 0

_.r 50

0

b " "

10 4

o,0, /"i7..:/:W I0 _

10 _
12 13 14 15 16 17

UT

Fig. 3. Coordinate system used for dea'cndedmagnetic
field data. [_ is parallel to the Tsyganenko field vector,

is earthward in the plane defined by 1_and the radius
h

vector from the center of the earth to CRRES and w is
westward.

Fig. 4. Energetic electrons and detre.nded magnetic

field data for 7 September 1990 (CRRES orbit
106). The flux dropout onsets are 1300, 1308,
1320. 1332 and 1409 UT.
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Inboth cases,the/)Bw turnedfrom westward towardszerooreastwardatthe fluxdropoutonsetsand

returnedwestward atthe fluxrecovery. Like thelocaleveningobservations,the fieldiscompressed

(positivec_Bb)duringthedropouts. Also, the fieldwas tail-likeatthedropoutonset and dipolarized

atthe fluxrecovery.These signatures,likethoseof thelocaleveningdropouts,are consistentwith

CRRES havingbeen approached and crossedby a regionI currentsystem atthe fluxdropout and at

recovery.This would be consistentwith CRRES having enteredthe taillobe on the localmorning

sideofthe magnetosphere.

Figure 5 shows the MICS energetic ion data and, again, the magnetic field difference plots for this
event. In this case, there was a one-to-one correspondence between the energetic electron flux

dropouts and the energetic ion flux dropouts. The primary difference between Figure 5 and Figure 2

was the relative absence of O+ ions throughout the magnetosphere on 7 September. Other than this
lack of O + and He ++ ions on 7 September, flux dropout features were remarkably identical for these

two events that were observed on opposite sides of the magnetosphere.

Examination of the plasma data (not shown here) showed that there was a one-to-one correspondence

between the energetic panicle flux dropouts and the plasma dropouts for the 7 September events.
The narrow dropouts at 1300 and 1308 UT were barely resolved in the summary plasma electron

plots and somewhat less clear in the ion plots. Like the local evening case, intense low energy field-
aligned electron fluxes were observed just prior to and immediately after the flux dropouts. In

general, such field-aligned "soft" electron fluxes were observed near the majority of the energetic
ion flux dropouts and at nearly all of the plasma dropouts.

Flux Dropout Statistics;

As mentioned above, we examined the energetic ion, magnetic field and plasma data that were avail-
able for all 117 energetic flux dropout events. Table 2 summarizes the breakdown into the different

categories according to whether the energetic ions and plasma showed flux dropouts and some crude

ranges of Kp and DST levels for the corresponding events. In general, the Kp values observed at the

time of the flux dropouts were moderate to high. This is presented graphically in Figure 6, where the
distributions of both energetic electron and energetic ion flux dropouts in Kp and DST are

shown.The dominance of moderate to high Kp values indicates the flux dropouts occur during
disturbed periods, as would be expected for the strong currents observed in association with the

dropouts (e.g., see Figures 2 and 5). But, there is no strong dependence on DST The majority of the
flux dropouts occurred during relatively low or modest DST This is somewhat surprising. It

indicates that magnetic storm conditions are not necessary for the flux dropouts to occur. One might

have expected that flux dropouts would have been more prevalent during the magnetically disturbed
conditions generally associated with larger ring current enhancements.

Figures 7 and 8 show the distribution of the CRRES flux dropouts in magnetic local time and L and

in magnetic latitude and L, respectively. Note that the paucity of events in two different local time
regions, one post-midnight (0 - 2 MLT) and one near noon (9-14 ML'I3, partially reflects the lack of

coverage in these regions. [CRRES apogee never reached the near noon sector and the instruments
were turned off in the post-midnight sector during the eclipse season.] There was only one obvious

magnetopause crossing observed by CRRES and this was eliminated from the data set. The different

panels in Figures 7 and 8 correspond to the distribution of energetic electron dropouts (a), the ener-
getic ion dropouts Co) and the plasma ion dropouts (c), respectively. Note that when one required
that the plasma ions disappear to have a total particle dropout, there remained only two events that

met this criterion on the morning side but a significant number on the evening side. All flux dropout

events were observed at magnetic latitudes 10° or more above and below the magnetic equator. The
preponderance of the dropouts occurred for L > 6.6 and all but two occurred for L > 5.5. This

indicates that to have a good probability of observing particle dropouts requires a satellite to be at or

above geosynchronous altitude and/or at moderate to high magnetic latitudes.

The trend of the points in Figure 8 to move to higher latitude with larger L shell is a result of the
CRRES orbital configuration. As noted in the introduction, CRRES ordy reached L <_ 6.3 at the
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Fig. 6. Energetic ion and electron dropout occturence frequency versus Kp and DST.

magnetic equator, but because of its moderate 18" inclination it could reach higher L shells when
apogee was off the magnetic equator. The ~ 10 hour orbital period allowed the CRRES apogee to

pass through a significant range of magnetic latitudes on a weekly basis. The morning side data were

taken in the late summer and fall of 1990 while the midnight to dusk data were taken in the spring
through summer of 1991. The combination of Figures 7 and 8 show that the morning side events all

occurred in the nonhero hemisphere and the midnight through dusk events occurred in the southern
hemisphere.

Finally, we looked at the changes in the local magnetic field at the times of the total plasma dropout

onsets to see if they were all consistent with the picture, described above, of the CRRES satellite

crossing (or being crossed by) a Region 1 current system, entering the tail lobes and then returning at
flux recovery. We grouped the events into morning side and dusk side local time regimes, as shown

in Table 3. We examined in detail the pre- and post-dropout field trends and the changes that

occurred at flux dropout onset and recovery. We categorized the changes, as shown in Table 3,
according to whether the field was tail-like (had a significant radial component) or was becoming tail-

like at onset and whether the azimuthal component changed and in which direction. In all cases, the

field was either strongly tail-like or became tail-like at flux dropout onset. In the majority of cases,
the azimuthal component turned eastward at onset. Since all the morning side events occurred in the
northern hemisphere and the dusk side events were in the southern hemisphere, an eastward rotation

of the field would be consistent with crossing a Region 1 current system in the respective local time

sectors. So it is clear from Table 3 that the majority of total plasma dropout events occurred as the
CRRES satellite crossed (or was crossed by) the boundary between the plasma sheet and tail lobe as

evidenced by the passage of the Region I current system along with the strongly tail-like field
geometry and the loss of all particle fluxes.
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Fig. 7. Distribution of flux droix:mts in magnetic local time and L shell: (a) f_ engergetic electrons, Co) for
energetic ions, and (c) for plasma ions.
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SUMMARY AND CONCLUSIONS

The local morning and local evening flux dropout events described here and the total plasma

dropouts represented in Table 3 clearly show that CRRES entered the magnetotail lobe during these

flux dropouts. In general, as seen in the two events shown, the recovery from the flux dropouts was
not associated with a signature of substorm expansion onset at CRRES. Given that most of the events

were observed away from the midnight sector, it is possible that the substorm signature was not
observable by CRRES. To determine whether there was a substorm associated with these events

requires examining ground magnetometer and other satellite data, which is beyond the scope of the
present work, but will be done as part of a continuing effort on this subject (see Konla et al./7/).

We emphasize that care was taken to eliminate magnetopause crossings (only one found) from this
data set by examining the plasma data for signatures of magnetosheath plasma. In all cases, very

significant currents were flowing near the CRRES satellite as evidenced by the strong changes in the
magnetic field topology from average conditions. The field was generally tail-like, indicating that the

satellite was near the inner edge of the cross-tail current system. T'ne actual current system configu-

ration that can give rise to such strongly tail-like conditions as were observed near 5.5-6.5 MLT (see

Figure 5) and 17.8.19.0 MLT (see Figure 2) is not clear, and its details require more observational
constraints than are provided by a single satellite measurement.

It should be noted that the majority of the energetic panicle flux dropouts included in this data set

had rapid onsets like those shown in Figures 1, 2, 4 and 5. The criterion that the lowest energy
channel from the CRRES MEA sensor must drop to background levels removed most of the events

that had slowly decreasing growth-phase-like flux decrease signatures/5/. While this reduced the total



number of electron flux dropout candidates, it provided a list of those most likely to also show

energetic ion and plasma dropouts. The high sensitivity of both the energetic electron and ion
sensors (MEA and MICS, see Table I) allowed us to set very stringent minimum flux levels for our

dropout identifications. As can been seen in Figures 1, 2, 4 and 5, these thresholds were orders of

magnitude below typical magnetospheric levels and comparable to the cosmic ray background
response of the sensors. It should also be noted that all particle data in this study were averaged over

one or more satellite rotations so that details of the panicle angular distributions were not visible.

The difference between the number of energetic electron and energetic ion flux dropouts is most

likely a result of the ions greater gyro-radii. That is, the ions are observable within an ion gyro-
radius of the plasma-sheet]tail-lobe boundary on the tail lobe side of the boundary, which is much

deeper in the tail lobe than an energetic electron can reach. In a follow-on study we will examine the
energetic ions and electrons in greater detail and use the available angular distribution data 113l to

"sound" the boundary in the neighborhood of the flux dropout intervals. This should help to more
clearly delineate the differences between the energetic electrons and ions during the flux dropout

events, it is most likely that, in some cases, the satellite approached to within a particle gyro-radius of

the boundary but did not pass through it.

The local time and seasonal results described above are in apparent disagreement with the recent

results of Moldwin et al. for events observed at geosynchronous orbit, wherein they found a prefer-

ence for the southern hemisphere dropouts to occur during the winter season and the northern hemi-
sphere dropouts to occur during the summer season/8/. In our case, the season did not appear to

matter. But, the Moldwin et at. results were from data taken near the geographic equator, whereas the
CRRES orbit sampled a much wider range of geographic and geomagnetic latitudes. Therefore,

CRRES observed the dropouts only when it was more than 10° away from the geomagnetic equator.
We did not note the geographic position of the dropouts during this study. This will be done during
the expanded study noted above.

At this point we do not know whether the field-aligned plasma electrons, observed at the edges of the

flux dropouts, are moving towards or away from the earth since the actual direction is not indicated in
the summary data. This will be examined in greater detail in a later paper. It is important because it

will more clearly identify the plasma regime that CRRES was immersed in just prior to the flux

dropouts and at the recovery. Given the strong field-aligned currents detected by the magnetometer
in these regions, it is possible these intense electrons may be the current carrying particles.

It is clear from the above discussion that much remains to be done on the subject of flux dropouts.

Some of the questions that arise are: How can the field be so tail-like at dusk and dawn on such low
L shells (_< 7)? Why are the electron dropouts more prevalent than ion dropouts? What are the

motions of the tail-lobe boundary relative to CRRES at the times of the dropouts? What is the

configuration of the tail-lobe boundary and the corresponding current systems during such events?
Were the solar wind conditions extreme (i.e., was the magnetosphere compressed)? Were substorm

onsets associated with many of the events? Were such flux dropout events observable at other

spacecraft, such as those in geosynchronous orbit. The answer to these and other questions will be
the focus of our future work on this subject.
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The What, Where, When, and
Why of Magnetospheric
Substorm Triggers

C S

HarlanE. Spence

Over the past three decades, terrestrial

magnetospheric physics has had a unifying
and hotly debated focus: the magneto-
spheric substorm. A magnetospheric sub-

storm is a three-phase phenomenon
[McPherron, 1979] in which energy is first ex-

tracted from the solar wind flow, transported,
and stored within the Earth's magnetospheric

magnetic fields (growth phase). The stored
magnetic energy is then converted and re-

leased explosively within the magnetosphere
and auroral ionosphere (expansion phase).
Then the magnetosphere and auroral iono-

sphere relax, entering a quiescent state (re-
covery phase).

Understanding of this global process has
unified the magnetospheric and auroral com-

munities by providing the "big picture" of
magnetospheric dynamics as a backdrop

against which unrelated areas of more fo-
cused research may be put in context. The
topic debated in the accompanying articles

centers on one aspect of magnetospheric sub-
storms, namely what triggers the expansion
phase. The companion papers present two

perspectives on substorm triggers: one advo-
cates a trigger that is driven by an external

change in the interplanetary magnetic field
(IMF), while the other argues that external
triggers are just one of many mechanisms

that lead to the expansion phase, including
internal instabilities.

What?

To appreciate the importance of the sub-
storm "trigger," it is imperative to establish

what a magnetospheric substorm is, at least
phenomenologically. A consensus definition
proposed many years ago stated that "A mag-
netospheric substorm is a transient process

initiated on the night side of the Earth in

which a significant amount of energy derived
from the solar wind-magnetosphere interac-
tion is deposited in the auroral ionosphere

Boston University Center for Space Physics,
725 Commonwealth Avenue, Boston, MA
02215

and magnetosphere" [Rostokeretal., 1980].
The transient substorm effects are global,
producing dramatic changes throughout
geospace. These include major topological

changes in magnetotail geometry as growth
phase magnetic field stress is released, ther-

malization and bulk acceleration of magneto-
spheric particle populations both in the inner

magnetosphere and the magnetotail as mag-
netic energy is converted to particle energy,
and dramatic intensifications and motions of
auroral emissions as electrical currents are

driven in the auroral ionosphere.

The agreed upon definition above does
not provide any physical explanation for

what causes a magnetospheric substorm. A
complete description requires a detailed ex-
planation of how the solar wind flow cou-

ples energy into and through the
magnetospheric system. Discussions of this

subject have been the root of most contempo-

rary debates in substorm physics. To keep
study focused on what triggers the substorm,
I avoid endorsing any one substorm model.

Two articles in this issue of Eos debate the

following question: Are substorms triggered
externally or internally? Lawrence Lyons, a

scientist from The Aerospace Corporation, ar-
gues in favor of an external trigger while An-
thony Lui, a scientist from the Johns Hopkins

University Applied Physics Laboratory, ar-
gues for an internal trigger. Both authors pre-

sent evidence to support their opposing
views. To put their arguments in perspective,
it is useful to first review the related body of

work that precedes them.
If substorm onsets are triggered exter-

nally, phenomenological relationships be-
tween onsets and external boundary
parameters should exist. Studies that investi-

gated these factors were a thrust of early sub-
storm research. Magnetospheric substorm

strength (measured by the intensity of cur-
rents flowing in the ionosphere) was found to
correlate strongly with the magnitude and

sign of the north-south component of the in-
terplanetary magnetic field (IMF). In most

models, solar wind flow energy is imparted to
the magnetosphere by way of dayside mag-

netic field merging between the southward
component of the IMF carried past the Earth

by the solar wind, and the northward di-
rected geomagnetic field near the subsolar
magnetopause boundary. In this picture, the

coupled magnetosphere-ionosphere system
is energized by its interaction with the solar

wind/IMF. It is most highly energized when
the IMF is most strongly southward. This
strong control exerted by the IMF on sub-

storm strength gave rise to the earlier related
debate: Are substorm currents driven directly

by the solar wind/IMF interaction (i.e., exter-
nally driven) or does the magnetosphere go

through an energy loading-unloading proc-
ess (which consists of external and possibly
internal aspects)? As is the case in most

"black-versus-white" arguments, subsequent
studies demonstrated that the answer is

"gray." Both driven and loading-unloading
processes contribute to the magnitude of

magnetospheric substorm currents.
Study next focused on whether the IMF

controls not only the magnitude of sub-
storms, but also directly triggers substorm on-

set. That brings us back to our main
discussion. In June 1994, I cochaired a ses-

sion devoted to substorm triggers with Terry
Onsager of the NOAA/Space Environment
Center at a National Science Foundation

(NSF) Geospace Environment Modeling
(GEM) Workshop in Snowmass, Colo. At this

session, "Tail Geometry: IMF Control and Trig-
gers," we asked Robert McPherron of UCLA

to review studies from the 1970s and early
1980s that sought relationships between sub-
storm expansion phase onsets and variations

in the direction of the IMF (particularly north-
ward excursions) or solar wind variations

(for example, dynamic pressure changes dis-
cussed in Lui's article). McPherron reported

a 45% likelihood that northward turnings of
the IMF occur at the time of sharp substorm
onsets, but that better determination of on-

set time and IMF data are needed. Workshop
participants agreed that this was a topic that

could be better quantified with both existing
data sets and those to be obtained from up-
coming solar-terrestrial missions. At this

year's NSF/GEM summer workshop, Larry
Lyons reported on a reinvestigation of the
IMF-substorm connection. He made the

strong assertion that "...most, and perhaps
all, substorm expansion phases are triggered

directly by IMF changes." This conclusion is
the basis of his new view of substorms

[Lyons, 1995]. That some or even many sub-
storms are triggered by northward turnings is
not controversial, but Lyons' statement that

most or perhaps all fit this category, drew the
attention of many people. Lyons recategor-

izes geomagnetic activity that lacks an IMF-in-
duced trigger and that has previously been
identified as a substorm to a different class of

phenomenon. This reclassification yields his
strong conclusion. That redefinition is a mat-

Copyright 1996 by the
American Geophysical Union
0096/3941/7709/96/81/$01.00.



terofongoingdebateandemphasizesthedif-
ficultywithsemantics.

TonyLui,whoexplainstheothersideof
thisdebate,isanadvocateofsubstormtrig-
germodelsbasedonplasmainstabilities
withinthemagnetosphere.Insuchmodels,a
localinstabilityoccurswithinthemagneto-
sphere,perhapsastheresultofglobalbound-
aryconditionsestablishedbythesolar
wind/IMF.Theinternalinstabilityhowever
mayoccurwithoutanyvariationsintheIMF
directly.Lui'sarticleexplorespheno-
menologicalevidencethatsupportstheinter-
naltriggerhypothesis.Ratherthansearching
forexplicitsignaturesofaninternaltrigger,
whichmayvaryaccordingtothechosen
physicalmodel,heseeksevidencefortheab-
senceofaconsistentIMFvariationassoci-
atedwithsubstormonsets.Lui'sreviewof
theliteraturesuggeststhatsubstormscanbe
triggeredbyavarietyofexternalstimuli,but
notexclusivelybynorthwardturningsofthe
IMF.Thisconclusionappearstobemore
widelyaccepted.

Externalandinternalsubstormtrigger
sourcesareentirelydifferentscenariosthat,in
anidealworld,shouldbereadilydiscernible
andcouldbeusedtotestthestrengthsofLyons'
andLui'sconclusions.Why,then,hasthisde-
batecontinued?Theanswermayinpartbe
merelysemantics.Thataside,aswehave
learnedinotherfieldsofgeophysicswherena-
tureisanuncontrolled"laboratory,"forexam-
ple,inearthquakeprediction,thatidentilyinga
triggermechanismisnotalwaysasstraightfor-
wardasitappears.Ashortageofpossiblephysi-
caltheoriesisnottheproblem.Identifying
triggermechanismsiscomplicatedbytheavail-
abledata.Imperfectobservationsaresome-
timestakenattherighttimesorplaces,orthe
correctme&suremenLsareobtainedbutatthe
wrongtimesorplaces.Ifwecannotdetermine
triggerlocationandLimewellenough,anycorre-
lationwithassociatedsolarwind/IMFvariations,
whichhavetheirownmeasurementuncertain-
ties,becomesproblematicandleadstounclear
answers.Uncertainties,then,inthe"where"and
"when"ofthesubstormtriggerhavelimitedour
abilitytorevealthe"why."

Where?

One important aspect of the physics of the
substorm trigger is the location where it oper-

ates. While the growth, expansion, and recov-
ery phases all exhibit global behavior during
substorms, it is not as clear where the expan-

sion phase onset begins, initiating the global

reconfiguration. Substorm phenomenology
has very different "faces" depending upon

where a particular measurement is made

(that is, ground-based, ionosphere, geosta-
tionary orbit, or magnetotail) and what quan-

tity is being measured (that is, magnetic or
electric fields, charged particles, auroral lu-
minosity, etc.). These factors influence the in-

ferred onset location. Consequently, location
estimates span a broad range, from near-geo-
stationary orbit to the distant magnetotail to

the auroral ionosphere. The size of the mag-
netosphere further confounds a simple reso-
lution to this question. It is the largest of the
geospheres with a volume of-103rcm 3.

Spacecraft sample only a minute portion of
this volume at any one time and, owing to the

magnetosphere's dynamism, often cannot
uniquely distinguish spatial from temporal
variations. In spite of the enormity ot the

volume, the sparseness of data, and time de-
pendence, heroic efforts have been made in

our understanding of the magnetosphere
and substorms. This is truly a triumph of

space physics. Critical stages have included:
establishing global auroral substorm phe-

nomenology based on syntheses of local,
ground-based observations [Akasofu, 1964];
quantifying magnetospheric boundaries and

the different regions they delineate from ex-
ploratory spacecraft missions; and investigat-

ing the physics of individual magnetospheric
regions using focused spacecraft missions.

New capabilities provided through the coor-
dinated, multipoint measurements of the In-
ternational Solar Terrestrial Physics Program

(ISTP) will allow us to advance our growing
knowledge of substorm onset location.

When?

The question of where the trigger occurs

is intertwined with the question of when sig-
natures at various locations occur relative to

one another. The magnetosphere-iono-
sphere system is electromagnetically cou-

pled, so despite the great volume, substorm
dynamics are evident across vast regions on

relatively short timescales (seconds to min-
utes). As noted above, the differentiation of
spatial and temporal variation is an inher-

ently very difficult task, and especially so for
substorm studies where strong spatial gradi-
ents and temporal evolution are both impor-

tant. The question of when the various key
phenomena occur at different locations and

how they connect in a physical sense is
therefore unresolved. High time resolution

measurements throughout the critical active
regions are still needed to establish what sig-
nature occurred first and therefore where

the onset begins.

Why?

The "where" and "when" questions of sub-
storm triggers outlined above speak to an un-
certainty in our empirical view o| substorms.

These are needed before we can assuredly
seek a clear association with possible exter-
nal variations. Establishing these morphologi-
cal characteristics are critical also for

addressing the more fundamental physical
questions of what the trigger mechanism is

and why it operates at a given location and
time in the substorm cycle. These underlying

questions should become clearer as the phe-

nomenology is clarified in the ISTP era. The
substorm is one of the two most prominent
dynamic responses of the terrestrial space

physics environment to solar-induced vari-
ations (the other being magnetic storms) and

is the most frequent one. Substorms are an
important element of "space weather" and

thus has not only a fundamental research mo-
tivation, but also a potentially practical appli-

cation to space- and ground-based systems
that may be vulnerable to variations of the
natural space environment. By any measure,

physical models are only as good as their abil-
ity to accurately predict a given phenome-
non. At this stage, we do not understand the

physics governing the substorm trigger well

enough. This research area will undoubtedly
yield the next generation of substorm models
that go well beyond the ability to describe

substorm phenomenology, but are truly pre-
dictive.
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We combine two theoretical models of plasma sheet particle transport to trace t)la._ma

sheet particles from the nightside magnetospheric equatorial plane to low altitudes. We

predict, that the low-altitude signature of the pla.sma sheet is manifestly different at (tifferenl

local times. The Guiding Center Transport Model (GCTM) (Onsager el al., 1993) uses

a given particle energy, position, and an a.ssumed magnetic and electric field to tra('e the

low-altitude particle's trajectory to the pla.sma sheet. The Finite Tail Wi(tth Convection

Model (FTWCM) (Sl)ence and Kive[son, 1993) uses two Maxwellian plasma sources, one

downtail and one on the dawnside boundary layer, to generate distribution fimctions across

the tail plasma sheet.. Using Liouville's theorem, the distribution fimetions at the equatorial

level are projected to low altitudes. When this signature of the pla_sma sheet is projected

to low altitudes near the Earth, the spatial variation in the equatorial pla_sma l)roperties

produce a latitudinal variation in the isoflux contours. Isoflux contours at. high latitudes at

dawn extend to lower latitudes at (hlsk, reflecting a larger plasma sheet plasma pressure at

dusk than at dawn. This prediction is ha.sed solely on a projection of spatial variations in

equatorial pla_slna properties.

1. Introduction

The macroscopic structure of the terrestrial plasma sheet is central to many large-scale a,s-

pects of magnetotail physics. For instance, in simple magnetohydrodynmnic descriptions of the

qua_si-static tail, spatial gra(tients of the pla_sma sheet pla,sma pressure at the magnetic equatorial

plane are a proxy for tail lobe magnetic field strengths (e.g., Spence et al., 1989). Another exmnple

is time-dependent magnetotail convection models; the distributions of nmnber density and pres-

sure constrain magnetic-flux-tul)e volumes and hence magnetospheric convection (e.g., Erickson,

1992). In such descriptions of the plasma sheet, plasma.s and magnetic fiehts are intimately linked

and each provides mfique yet. coupled insights on the t)hysics of the magnetotail.

Both theoretical models and empirical models may be used to describe the tail. Empirical

models of the magnetic fiehl in the magnetotail have improved steadily over the past two decades

and are now used commonly a.s a research tool (Peredo et at., 1993). Similar models of magnetotail

plasmas are not in common use for several rea.sons: incomplete energy coverage of measured

spectra; limited orbital coverage; and temporal/spatial ambiguity, since the transit time of a

large apogee satellite is greater than the dynamic timescale, even during quiescent or qua_si-stat.ic

periods.

This last shortconfing ix avoided at intermediate to low altitudes (<3 RE), where polar or-

biting spacecraft traverse the lower altitude extension of the pla,sma sheet (the so-called "horns" )

relatively quickly. These rapid passages yMd "snapshots" of the equatorial plasma sheet. Stud-

ies have utilized this approach successflflly (Suszcynsky et at., 1993; Onsager and Mukai, 1995).

887
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Despite the advantage gained by low altitude measurements of the plasma sheet, a single low-

altitude spacecraft provides only one passage through the plasma sheet horns per orbit; and it

occurs at only one fixed local time (equivalent to a single equatorial trajectory, throngh the mag-

netotail plasnla sheet). To construct an empirical two-dimensional, instantaneous map of plasmas

ill tile equatorial plane requires many satellites traversing the plasma sheet horns siInultaneously

at various local times. Such multi-satellite studies have not been available routinely.

In this paper, we complement single spacecraft low-altitude data studies, g_e combine two

published theoretical models of nmgnetospheric particle transport, to predict tile low-altitude sig-

nature of the plasma sheet as a function of local time. One model specifies the plasma thermal

pressure and density throughout tile equatorial magnetotail. The other specifies the inapt)ing

of plasma properties between the equatorial plane and internmdiate altitudes. The magnetotail

plasma inodel is quasi-static yet predicts spatial gradients of the macroscopic plasma quanti-

ties. These cross- and down-tail variations at. the equatorial plane produce differences in the

low-altitude plasma sheet signatures at different local times. It is important t.o stress that the

predicted local tiine differences arise from spatial differences, a eonchlsion not easily reached from

a single spacecraft, passage through the plasma sheet horns. We suggest that model syntheses of

this tyt)e improve the interpretation of low-altitude plasma sheet signatures.

2. Models

2.1 Guiding center transport model

The Guiding Center Transport Model (Onsager et al., 1993) traces guiding centers of ions and

electrons between low altitudes and the magnetic equatorial plane. Tile particle guiding centers

are traced backwards in time to determine the source locations ill the equatorial plane of particles

detectable by a low-altitude spacecraft. For the purposes of this research, we have considered only

protons. Protons are followed as they travel through specifed electric and magnetic fields; their

energy and magnetic moments are conserved as their guiding centers are traced. The electric

field is an imt)osed dawn to dusk field across the tail; nmgnetic field lines are assumed to be

e(tuit)otentials. The magnetic field model used is the Tsyganenko model (Tsyganenko, 1987).

The magnetic field model is parameterize(t t)y the Kp index and the dipole tilt angle.

In Fig. 1, we show a typical guiding center trace in the XC;S'M-Zc;_S'M plane. The dashed

lille is the trace of the guiding center. The solid lines are the magnetic field lines. The particle's

guiding center trajectory in two dimensions is determined by the integral effects of its E × B

drift velocity across magnetic field lines and its velocity along the magnetic field lines. The

particle t)eing traced "backwards" from an altitude of 10,000 km and at _73 ° magnetic latitude

is a 2 keV proton with a 10 ° pitch angle. These specify the initial velocity comt)onents and

following tile guiding center to its origin, we find that this particle originated in the plasma sheet

at Xc:s'M = --53 RE. In this example of how the GCTM maps guiding centers, the dipole tilt

angle was -29 ° and tile Kp = 3.

Tile inputs to the GCTM are the position, pitch angle (here assumed to be 10°), and energy

of the particles detectable at low altitudes. The positions are chosen to represent, a polar orbiting

satellite trajectory at several fixed magnetic local tiines. For the results described here, we

have assmned all electric field that corresponds to an E x B drift, speed of 1 km/s equatorward

at tile initial low altitude position (--_10,000 km). This electric field when mapped along the

assnmed equipotential magnetic field to the equatorial plane yields an electric field of about 0.08

mV/m at XC;SM = --60 RE and about 0.15 mV/m at XC, SM = --15 RE. These values of the

electric field correspond to earthward convection speeds in the plasma sheet of about 50 kin/see

at XC;SM = --60 RE and about 25 kin/see at XC.SM = --15 RE. The inputs to the magnetic

field model are the dipole tilt angle and the Kp used fi)r Fig. 1.

Tile model specifies the particle's position ill the equatorial plane an(t its energy, but not its
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Fig. 1. A cartoon of the Guiding Center Transport Model. The dashed line represents a 2 keV proton originating

in the plasma sheet at X = -53 RE detected at _10,000 km in altitude at 73 ° latitude. The Kp 3; the

Earth's dipole is tilted -29 ° .
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Fig. 2. A cartoon of the Finite Tail Width Convection Model. There are two sources of plasma, hoth Maxwellian:

the dawnside low-latitude boundary layer and the tail source. Particles drift, from the source regions and the

two sets of particles at a given point are then summed (Spence and Kivelson, 1993).
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flux. To deternfiim the proton flux we must know tile ph_use space density at the equatorial plane.

The pb_sma conditions throughout the pla_sma sheet equatorial plane have been calculated using

the Finite Tail Width Convection Model (FTWCM) (Spenee and Kiwqson, 1993) (hereinafter

referred to as SK93).

2.2 The finite tail width conveetion model

Tile FTWCM is a t)ounee averaged drift model for ions. It descrit/es the bulk plasma proper-

ties in the magnetotail from -10 < XG,S,M < --20 and ]Yc;,s'M] <_ 20 RE at the magnetic equator.

This model has been described extensively elsewhere (Kiw_lson and Spenee, 1988: Spence and

Kivelson, 1990, and SK93) and is summarized only briefly here.

The model has two sources of partMes which populate the plasma sheet: the low-latitude

boundary layer and tile (tistant magnetotail. Figure 2 is a cartoon depicting the model and its

sources. The model has five input parameters: proton nulntmr density and temperature for both

plasma sources and the cross-tail electrostatic potential. Both plasma source (listritmtions are

i_ssumed isotropic and Maxwellian. An additional parameter that the model requires is the flux-

tube volume along the midnight meridian. This is calculated using the Tsyganenko 1987 hmg

model (Tsyganenko, 1987).

Particles drift both earthward and from dawn-to-dusk under the influence of E x B and VB

drifts fi'om the source distributions. For a finite width tail, only those protons starting in the deep

tail (dawn t)oundary layer) with velocities less (greater) than some linfiting velocity can reach

ally given final t)osition. At this final location, the ensemble distribution function is the sum of

those portions of the source distributions that (:all gain access. The pla.sma molnents have finite

velocity limits and this inodifies densities and pressures as a fimction of position within the tail.

Figure 3 illustrates the model outputs: plasma density and thermal pressure calculated t_s

a flmction of position in the nmgnetic equatorial plane. For our study, representative quiet

magnetospheric conditions were used. The model ilqmts are ms follows: a. cross tail potential of

15 kV; a far-tail plasma source t.emperature, lvTT = 2.5 keV and munl)er density, nT -- (1.1 cm-a:

and a low-latitude boundary layer t.emperature, kTL = 0.7 keV and mmlber density, nt_ 0.5

cm -a. These values are identical to those motivated by and used in SK93. The top panel of

Fig. 3 shows numt)er density contours in mmll)er/cm a plotted in the equatorial plane, where the

vertical axis is Yc;sM and tile horizontal axis is XGSM. The middle panel shows t.hermal pressure

in nDynes/cm 2. The bottom panel shows the teInt)erature contours ill keg.

Note that each panel demonstrates the strong :r-det)endent variation owing to adiabatic

(:ompression as well a,s a y-dependent variation owing to gradient drift effects. The earthwar(t

increases ill density and pressure are well studied and understood in terms of convective transt)ort

and stress balance (Lui et at., 1994; Spence et al., 1989). The crosstail variation has t)een less

stu(tie(t empirically an(t warrants (tiscussion in the c()nt.(_xt of this paper.

The large erosstail plasma pressure gradient lnust t)e in stress t)alance with the coincident

magnetic geometry in the magnetostatic linfit. This is not true for the FTWCM using the Tsy-

ganenko 1987 long model, as the magnetic field wa_s not. self-consistently rea(tjusted actor(ling to

the predicted plasma pressures. Nevertheless, we believe that tile FTWCM provides a reas,)nable

first-order approximation. For example, the model cross-tail t/ressure gradient was considered

t/y SK93. They reasoned that t)ressure t)alance cannot t)e nlaintained by an e(tual and opt/osit('

crosstail lobe magnetic pressure gradient. Instead, they propose(t a magnetic pressm'e gradient

within the plasma sheet which incre;uses froln dusk to dawn. Evidence for this condition was

foun(t not only in tail plasma sheet plasma pressure surveys (Liu and Rostoker, 1991 ), lint also in

magnetic surveys (Fairfield, 1986). The empirical models coInl)are favorat)ly with the FTWCM

model results (see SK93). We at/t)eal to this ext)lanatioll for consid(wation of the aI)t)earan('e of

this (:ross- (and down-) tail variation at low altitudes.
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contours; and the t)ottom panel is thermal energy contours.
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3. Tile Melding of the Models

The GCTM output gives a position and an energy in the near-tail equatorial plane corre-

sponding to the source location of a particle detected along the low-altitude spacecraft trajectory.

At these positions, the FTWCM can then be used to determine the distribution function as a

function of energy. Using Liouville's theorem, the values of phase space densities in the equatorial

plane can be assigned to the corresponding locations at low altitudes for comparison with a polar

orbiting spacecraft, such as Akebono. Such comparisons have been made recently by Onsager
and Mukai (1995). In their work, they arbitrarily specified phase space densities at the equatorial

plane and restricted their attention to one magnetic meridian (local time) at low altitudes. In
this paper, we extend their approach by investigating the low-altitude plasma sheet signature at

several local times in the context of a two-dimensional physically-motivated model of plasma at

the equator.

In combining the models, the assumptions and inputs are as consistent as possible. For

example, the magnetic field model used is the same for hoth models. Other aspects of the

models differ slightly in approach but these differences do not affect the results of tile mappings

qualitatively. For example, the electric fields are treated somewhat differently in each model.

The electric field magnitudes at the equatorial plane are similar at the down-tail boundary of

the FTWCM, but differ by a factor of two at the earthward boundary. We stress that for tile

GCTM results presented here, the calculated low-altitude spectra are governed primarily by the
magnetic field mapping between tile low-altitude locations and tile plasma sheet. In these cases,

the details of how the electric field is distributed are a secondary effect and are not treated, in

this study.

To illustrate the model synthesis we chose to generate synthetic spectra that a low-altitude

spacecraft plasma analyzer (such as on the Akebono spacecraft (Mukai et al., 1990)) would be

able to observe. We chose Akebono because it has been used recently in such studies (Onsager
and Mukai, 1995). Accordingly, the energy bins used for the GCTM were chosen to inatch

Akebono energy bins and initial low-altitude locations were chosen along orbital tracks of a polar

orbiting spacecraft at three local times. The FTWCM parameters were chosen to match the SK93

values. The synthesized model results are thus representative of relatively quiet magnetospheric

conditions. The results shown in Fig. 4 demonstrate the prediction of the plasma sheet's projection

to various low-altitude locations in a general sense. Of course, any comparison of the model with

real data would require selection of model parameters consistent with actual conditions.

Figure 4 shows the combined model output of spectra that we predict would be measured
by three spacecraft simultaneously traversing the "horns" at three local times: _2200 hours,

midnight, and _0200 hours. The vertical axis is energy measured on a logarithmic scale. Tile

horizontal axis is magnetic latitude. The contours are differential energy flux. White on this scale

represents flux levels below the simulated detector threshold here consistent with the Akebono

Low Energy Particle (LEP) sensors.

Figure 4 describes the predicted signature of the plasma sheet at low altitudes as a function

of local tinm. This figure illustrates that low-altitude data can be used to remotely sense plasma

sheet conditions. For example, at any particular local time pass, the flux intensity increases

as tile spacecraft moves to lower latitude reflecting the earthward compression of plasnm and
the commensurate rise in number density. Also, the energy width of the flux contours increases

equatorward, reflecting the earthward increase of plasma sheet pressure and temperature. The

flux levels can be used quantitatively to infer plasma sheet bulk properties.

Of more interest for this paper, though, are the predicted local time dependences which also

mirror plasma sheet conditions. The important feature on these plots is the apparent latitudinal

position of the outer edge of the plasma sheet signature (identified by the first observable isoflux

level) at the three local times. The y-dependence of the plasma sheet temperature (see bottom
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Fig. 4. The model output compared at three local times: midnight, 0200, and 2200. \Vhite represents differential

energy fluxes below the threshold.

panel of Fig. 4) yields a clear local time dependence at low altitudes: the flux energy width (a
measure of temperature) increases from the top to bottom panel of Fig. 4, consistent with the
dawn-to-dusk energy gradient. This is most clearly seen when comparing the profiles at 2200 and
0200 magnetic local time where the magnetic mappings, which affect the latitudinal appearance
of the plasma sheet, are identical within the symmetric Tsyganenko model. The mapping of the
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Tsyganenko model also explains wily' the midnight inapping of the first isoflux contour is at h)wer

latitudes, since the fieht is more stretched near midnight.

4. Conclusions

Two models were linked: the finite tail width convection model and tile guiding center

transport model. Their outtmt makes specific predictions for plasma sheet ion fluxes detectable

at low-altitudes. Specifically, before local midnight, tile plasma sheet appears to be hotter and

the particle isofluxes are visible at higher invariant latitudes than after local midnight.

The spectra in Fig. 4 show the spatial variations in the plasma sheet signature; the invariant

latitude where the protons have the salne flux differ with local tilne as does the energy width of the

mea,sured flux. The importance of this model is that it is time-independent. Therefore, all model

predictions for differences in the plasrna sheet signature are due to spatial effects: the projection

to low altitudes of the plasnm, pressure asymmetry in the equatorial plane. This asymmetry is

due to the differential drift of plt_sma across the tail. This type of variation shouht be readily

apparent in concurrent satellite passes at low or middle altitudes at several local times.

These models can be used to compare near-simultaneous measurements by multiple space-

craft. Currently we are in the process of _ssessing the models against ISEE-2 data (Hirsch t'!

al., 1995). The ideal test case is simultaneous mea.surements at different local times from two or

more spacecraft. During the International Solar-Terrestrial Physics program it is of great impor-

tahoe to have diagnostic tools such a,s this one to develop links between low and middle altitude

crossings of the plasma sheet horns and the equatorial plane.
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